Parametric inference for mixed models defined by stochastic differential equations
نویسندگان
چکیده
Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned hybrid Gibbs algorithm based on conditional Brownian bridges simulations of the unobserved process paths is included in this algorithm. The convergence is proved and the error induced on the likelihood by the Euler-Maruyama approximation is bounded as a function of the step size of the approximation. Results of a pharmacokinetic simulation study illustrate the accuracy of this estimation method. The analysis of the Theophyllin real dataset illustrates the relevance of the SDE approach relative to the deterministic approach. Résumé. Nous considérons des modèles non-linéaires mixtes dont la fonction de régression est un processus de diffusion : les paramètres du processus sont aléatoires et dépendent de l’individu. Une méthode d’estimation par maximum de vraisemblance basée sur une version stochastique de l’algorithme EM, est proposée pour ces modèles. Elle repose sur une approximation par la méthode d’EulerMaruyama du processus de diffusion, approximation obtenue en introduisant des temps auxiliaires entre les instants de mesure. La convergence de cet algorithme est démontrée. L’erreur induite par l’approximation d’Euler-Maruyama sur la fonction de vraisemblance est contrôlée en fonction du pas du schéma d’approximation. Une étude sur données simulées à partir d’un modèle issu de la pharmacocinétique illustre la précision de la méthode d’estimation proposée. L’analyse du jeu de données réelles de la Théophylline illustre la pertinence de l’approche par SDE par rapport à l’approche déterministe (par ODE). 1991 Mathematics Subject Classification. 62M99, 62F10,62F15, 62M09, 62L20, 65C30,65C40, 62P10 .
منابع مشابه
Simulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations
The main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different ...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملA minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models
A Minimum Disparity Distance Estimator minimizes a φ-divergence between the marginal density of a parametric model and its non-parametric estimate. This principle is applied to the estimation of stochastic differential equation models, choosing the Hellinger distance as particular φ−divergence. Under an hypothesis of stationarity, the parametric marginal density is provided by solving the Kolmo...
متن کاملEM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models
Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. These biological processes can be adequately modeled by parametric Stochastic Differential Equations (SDEs). We focus on the parametric maximum likelihood estimation of this mixed-effects model defined by SDE. As the likelihood is not explicit, we propose a stochastic version of the E...
متن کاملUsing PMCMC in EM algorithm for stochastic mixed models: theoretical and practical issues
Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. Recently, stochastic processes have been introduced to model the variability along time for each subject. Although the likelihood of these stochastic mixed models is intractable, various estimation methods have been proposed when the latent stochastic process is a discrete time finite...
متن کاملDYNSTOCH 2013 University of Copenhagen April 17 - 19
s (Talks) 5 Adeline Samson. PARAMETER ESTIMATION IN THE STOCHASTIC MORRIS-LECAR NEURONAL MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Alexander Schnurr. AN ORDINAL PATTERN APPROACH TO DETECT AND TO MODEL DEPENDENCE STRUCTURES BETWEEN FINANCIAL TIME SERIES . . . . . . . . . . . . 7 Benedikt Funke. ADAPTIVE NADARAYA-WATSON LIKE ESTIMATORS FOR THE ESTIMATION ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007